The role of acetylsalicylic acid (ASA) for patients with atherosclerotic disease is now uncontested. Recent meta-analysis showed ASA reduces the risk of relapse by about 20% to 30% for subjects with conditions such as angina and intermittent claudication and for those who have had an infarction or a stroke.¹

The benefits of ASA use as a primary prevention tool for individuals without a clinical or paraclinical manifestation of atherosclerotic disease are less clear.

1. What about women?

There is much less evidence for the use of ASA as primary prevention for women. Only two of the five major studies in primary prevention included women.

- In the Primary Prevention Project (PPP), benefit seemed identical for men and women.
- In the Hypertension Optimal Treatment trial (HOT), infarction incidences did not significantly decrease for women.
- The Nurses’ Health Study (a 1991 observation study of 88,000 women) showed one to six doses of ASA/week reduced the number of myocardial infarctions by 25%.²

However, no major total decreases were recorded for vascular incidents (cardiac deaths, infarctions or strokes) or total deaths.³ The definite response to whether ASA is beneficial in primary prevention for women is currently the objective of a major study of 40,000 patients (Women’s Health Study).³

Table 1

Effectiveness of ASA in primary prevention

<table>
<thead>
<tr>
<th>Issues</th>
<th>Relative Risk (IC95%)</th>
<th>NNT/year (Number needed to treat/year)</th>
<th>NNH/an (Number needed to harm/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>0.72 (0.60-0.87)</td>
<td>875</td>
<td></td>
</tr>
<tr>
<td>Total mortality</td>
<td>0.87 (0.70-1.09)</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Total strokes</td>
<td>1.02 (0.85-1.23)</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Deaths from all causes</td>
<td>0.93 (0.84-1.02)</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Risks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haemorrhagic stroke</td>
<td>1.4 (0.9-2.0)</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal bleeding</td>
<td>1.7 (1.4-2.1)</td>
<td>950</td>
<td></td>
</tr>
</tbody>
</table>

NS: Not significant

2. Does diabetes play a role?

Patients with diabetes are known to be at higher risk for cardiovascular events. A diabetes patient who has never had an MI is at equal risk as a patient who has. That said, the Canadian Working Group on Dyslipidemia recommends low-density lipoprotein (LDL) targets be identical for patients with atherosclerotic disease or diabetes. In this sense, ASA use for diabetes patients seems appropriate. However, no study to date has evaluated the effectiveness of ASA on major clinical issues in diabetes patients who do not have atherosclerotic disease.

Subanalyses of major studies indicate a benefit, although the total number of events showing a benefit remains small. Another study of diabetes patients with retinopathy, either with or without coronary heart disease, showed a tendency of decreased total mortality and infarctions. Nevertheless, there is no present study on primary prevention in the “pure” diabetic.

3. What are the risks?

The price to pay for a decrease of MI is an increase in bleeding, especially gastrointestinal (relative risk 1.7). For 1,000 men receiving ASA over five years, about three will have major gastrointestinal bleeding and one will have a hemorrhagic stroke.

Blood pressure is an important factor; many studies show the higher the blood pressure, the less effective ASA is. Blood pressure should thus be well-controlled.

Many other effects of ASA are being investigated. Incidences of neoplasia (particularly colorectal) could possibly be decreased, although this has not been confirmed by randomized studies. A negative interaction between angiotensin-converting enzyme (ACE) inhibitors and ASA, especially at high doses, is also the subject of controversy.

Moreover, certain patients manifest ASA resistance, which probably prevents them from drawing the same treatment benefit. However, a clinical observation of this effect is not presently feasible.

No current studies analyse primary prevention on the new clopidogrel or ticlodipine antiplatelet agents.

Dr. Lanthier is an associate professor, faculty of medicine, Université de Sherbrooke, and Internist, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec.
4. Any recommendations?

The U.S. Preventive Services Task Force recommends ASA use in primary prevention for patients with high risk of coronary heart disease (≥ 3% in a five-year period).

The American Heart Association (AHA) and the American College of Chest Physicians (ACCP) recommend the use of ASA if the cardiovascular risk is ≥ 10% in a 10-year period.

A recent article of the New England Journal of Medicine recommends using ASA if:

a) the risk of coronary heart disease in a 10-year period is ≥ 15%;

b) 7% to 14% risk is diagnosed in conjunction with essential hypertension with target organ damage, diabetes, a poor physical condition; or

c) patient shows preference and tolerance for ASA.

Cardiac risk can be evaluated with the Framingham tables or with other similar tools (Sheffield tables, Prospective Cardiovascular Munster Risky Factors, etc.).

The latest recommendations by the Canadian Task Force on the Periodic Health Examination date back to 1994 and these neither encourage nor discourage the use of ASA in primary prevention.

As for diabetes patients, the American Diabetes Association (ADA) suggests ASA use for high-risk individuals over 30 years of age. The ADA estimates the benefits of ASA for patients with diabetes probably outweigh the risks.

References

